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SUMMARY 

An order-of-magnitude analysis of the subsonic three-dimensional, steady 

time-averaged Navier-Stokes equations, for semi-bounded aerodynamic juncture 

geometries, yields the parabolic Navier-Stokes simplification. The numerical 

solution of the resultant pressure Poisson equation is cast into complementary 

and particular parts, yielding an iterative interaction algorithm with an 

exterior three-dimensional potential flow solution. A parabolic transverse 

momentum equation set is constructed, wherein robust enforcement of first- 

order continuity effects is accomplished using a penalty differential con- 

straint concept within a finite element solution algorithm. A Reynolds stress 

constitutive equation, with low turbulence Reynolds number wall functions, is 

employed for closure, using parabolic forms of the two-equation turbulent 

kinetic energy-dissipation equation system. Numerical results document 

accuracy, convergence and utility of the developed finite element algorithm,. 

.., 
and the CMC:3DPNS computer code applied to an idealized wing-body juncture 

region. Additional results document accuracy aspects of the algorithm turbu- 

lence closure model. 



INTRODUCTION 

A prime requirement in computational aerodynamics is flow prediction in 

juncture regions formed by the intersection of aerodynamic surfaces, e.g., 

wing-body, wing-winglet, pylon-wing, etc. In most instances of interest, the 

associated flow is three-dimensional, subsonic with variable density, and 

turbulent. The characteristic action of such flows is roll-up of a vortex in 

the plane transverse to the chord coordinate, and mass efflux/influx into the 

boundary layer regions located at some distance from the juncture region. The 

requirement of a numerical algorithm for the juncture flow is to predict the 

associated vortex structure, hence compute a corner drag coefficient, and to 

provide transverse plane velocity boundary conditions for a conventional 

three-dimensional boundary layer analysis of the associated farfield flows. 

The essential key aspects of this problem are illustrated in the geometry 

of the idealized exterior subsonic axial corner, see Figure 1, which has 

received considerable theoretical and experimental attention. Rubin, et al., 

b-41 pioneered in formulation and analysis of the three-dimensional laminar 

corner flow problem. Tokuda [5] documents an extension of this analysis, and 

compared his predictions to the experimental data of Zamir and Young 161. 

Bragg [7] analyzed the corresponding turbulent flow case, and determined the 

corner distribution of the chordwise Reynolds normal stress component u;u;. 

The salient feature of the turbulent flow case is inducement of a persistent 

axial vorticity component. Various causal mechanisms have been theorized, 

including transverse pressure waves r8] , Reynolds shear stress gradients 

along the corner bisector [g] , and nonisotropy of the Reynolds stress tensor 

IlO]. Quality experimental data for a confined corner flow Ill] , compared to 

documentary results reported herein,indicate the primary mechanism to be noni- 

sotropy of the Reynolds stress tensor u:uC. 
1 J 
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Figure 1 .-Idealized Juncture Region Geometry 

The character in the idealized corner region flow thus appears the result 

of a delicate balance between turbulence phenomena and the induced secondary 

mean flow velocity field. These mechanisms represent a balancing of higher- 

order effects however, as discussed herein, and can be readily dominated by 

flow-field curvature induced vorticity, cf. [12,13]. Nevertheless, an adequate 

Reynolds stress closure model is required and has been developed for this 

problem class. The six components of the (symmetric) Reynolds,stress tensor 

are determined using a tensor field constitutive equation formulation which 

requires solution of parabolized forms of the transport equations for turbulent 

kinetic energy (k) and isotropic dissipation funct 

tutive equation includes a low turbulence Reynolds 

to permit solution of the (k, E) equation system d 

region adjacent to an aerodynamic surface. Hence, 

the k and E solutions are identical vanishing at a 

on (E). The stress consti- 

number length scale model 

rectly through the sublayer 

the boundary conditions for 

1 aerodynamic surfaces. 

A pressure-velocity formulation is undoubtedly preferred for an algorithm 

to predict turbulent aerodynamic juncture region flows. While definition of a 

transverse plane potential function p4] can automatically .satisfy the contin- 

uity equation, the elimination of transverse pressure gradients comes e.t the 

expense of definition and use of vorticity. The acknowledged weakness of the 
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vorticity formulation is the kinematic boundary condition statement. The 

existence of very large mean flow strain rates at an aerodynamic surface, for 

turbulent flow, serves to further complicate this intrinsic weakness. Con- 

versely, in a physical variable formulation, an algorithm is required developed 

to construct an overall parabolic, i.e., initial-value, elliptic boundary value 

statement for transverse plane phenomena. A careful order of magnitude analysis Of the transverse plane momentum equatio,ns indicates that pressure distributions 

will balance convection and/or turbulence effects to first order, and that 

overall, this balance is of higher order effects than controlled by the con- 

tinuity equation. Since the continuity equation is not parabolic for subsonic 

flow, the construction of a suitable transverse plane equation system is 

required and presented. 

The pressure-velocity formulation is derived and evaluated herein for 

steady turbulent flow prediction in three-dimensional,semi-bounded aerodynamic 

juncture region domains. Persistence of the chordwise component cf the time- 

averaged, mean flow velocity permits an order of magnitude analysis, yielding 

the parabolic approximation to the governing three-dimensional, steady time- 

averaged Navier-Stokes equations. Using the same procedure for components of 

the Reynolds stress tensor, the balancing of lowest order terms in the two- 

transverse momentum equations yields a pressure Poisson equation. An algo- 

rithm for this equation is derived in terms of complementary and particular 

solution fields. The complementary solution is determined using boundary 

conditions obtained from an exterior potential flow solution. The particular 

solution refines this pressure determination by accounting for the Reynolds 

stress and transverse velocity distributions. The particular solution is 

enforced in a retarded manner in the chordwise momentum equation, to update 

the three-dimensional pressure field, yielding an iterative-interaction algo- 

rithm with the three-dimensional exterior potential flow solution. Algorithm 

convergence occurs when this composite pressure solution becomes stationary. 

As a consequence of the ordering analysis, the number of dependent variables 

requiring solution exceeds the available equations. Therefore, using finite 

element penalty function concepts in constrained extremization, cf. p5] , 

a transverse momentum equation solution statement is constructed wherein the 

first-order effects of the nonparabolic continuity equation are enforced as 

a differential constraint. 
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SYMBOLS 
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U X. 1 
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h 
a 
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boundary condition coefficient 

constant 

constant 

finite element two-dimensional hypermatrix prefix 

turbulence model coefficient; initial-value matrix 

energy norm 

function of known argument 

finite element matrix; discretized equation system 

function of known argument 

fini.fe element matrix prefix 

metric coefficient 

stagnation enthalpy; Hilbert space 

index 

index 

Jacobian matrix 

turbulence kinetic energy; finite element basis degree 

summation index; differential operator 

differential operator 

number of finite elements spanning R2 

unit normal vector; dimension of space 

finite element cardinal basis; discrete index 

pressure; iteration index 

heat flux vector; generalized dependent variable 

generalized semi-discrete dependent variable 

spatial domain of differential operator 

source term 

finite element assembly operator 

velocity vector 

Reynolds kinematic stress tensor 

convection matrix 

Cartesian coordinate system 

shear velocity Reynolds number 

Lagrange multiplier set 

partial derivative operator 

boundary of solution domain R2 

Kronecker delta; parameter 

iteration vector 
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A mesh measure; increment 

E isotropic dissipation function; parameter 

3 
curvilinear coordinate system 

lc heat conductivity coefficient 

V kinematic viscosity 

P density 

'ij Stokes stress tensor 

c summation 

9 constraint dependent variable 

w sublayer damping function 

R solution domain 

Superscripts 

Subscripts 

e 

i AM 

j 0 
Notation 

1 I 

c 1 

L-l 

r-l 

E 

finite element reference 

solution approximation 

initial condition reference 

iteration index 

matrix transpose 

turbulent reference 

ordinary derivative 

finite element reference 

tensor indices 

time step index 

reference state 

column matrix 

square matrix 

union 

intersection 

belongs to 



PROBLEM DESCRIPTION 

Parabolic Navier4tokes Equations 

The three-dimensional parabolic Navier-Stokes (3DPNS) equations are a 

simplification of the steady, three-dimensional time-averaged Navier-Stokes 

equations. In Cartesian tensor notation, and employing superscript tilde and. 

bar to denote mass-weighted and conventional time-averaging respectively, [16i, 
the conservative equation form for a variable density, heat conducting fluid 

is 

= 0 

-- 
- "i;ij + pH'uj - u;uij + ij 1 = 0 

+ (C &ru: - ;s..)s 
ke I J 1J 3Xi 

aiii 
+ bE = 0 

+ CE 1- uru: 
Eaui 
-- 

1 J kax. J 

,a) 

(2) 

(3) 

(4) 

+ce.L= 0 
Ek (5) 

In equations 1-3, i is density, fj is the mean velocity vector, p' is pressure, 

6 ij is the Kronecker delta, and H is stagnation enthalpy. The Stokes stress 

tensor ~ij and heat flux vector qj are defined as, 

a. . 
1J 

= ;; (Eij - $ ‘ij’kk) /Re (6) 

(7) Tj 
- ai 

= Kax. 
J 
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-- 
where Re is the reference Reynolds number, Re = UmL/vco , and -pu:u': is the 

1 J 
Reynolds stress tensor. In equations 6-7, 3 and i are fluid kinematic viscos- 

ity and heat conductivity respectively, and "E.. is the mean flow strain rate 

tensor 

5: - atii + E&J- 
ij ax. 

J 
axi (8) 

Equations 4-5 are the transport equations for turbulent kinetic energy and 

isotropic dissipation function, as obtained using the closure model of Launder, 

Reece and Rodi p7] for the pressure-strain and triple correlations, and 

2v aui aui 
E ’ 3 axj axk 'jk 

-I I 

(9) 

(10) 

The various coefficients Ci are model constants, cf. p8]. 

The parabolic Navier-Stokes equation set is derived from equations 1-5 by 

assuming the ratio of transverse mean velocity components to chordwise 

component is less than unity, and by further assuming that: 

1. the chordwise velocity component suffers no reversal, 

2. diffusive transport processes in the chordwise direction 
are higher-order, hence negligible, and 

3. the overall elliptic character of the parent three- 
dimensional Navier-Stokes equation is enforcable through 
construction of a suitable pressure field with exterior 
flow b0undar.y conditions. 

Assume the x1 (curvilinear) coordinate direction parallel to the chordwise 

mean flow direction, with scalar velocity component til of order unity, i.e. 

00). Further assume O(u,) - O(s) - O(Us), and that O(S) < O(1). As occurs 

with boundary layer theory, the continuity equation confirms that chordwise 

variation in Ul is of the order equal to appropriate transverse variation of ij2 

and us; hence, for &- 
1 

= O(l), $- 
2 

J o(P) a &- . 
3 
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Determination of the relative order of terms in the momentum equation 2 

is straightforward. 

term &- 

For the ii1 equation, since O(pu;ui) must be O(a), the 

(puju:) is higher order and can be discarded. 

chordwisk diffusion is negligible infers that &- 

The assumption that 

(Ed z 0, hence O(Re-') 5 

O(6) . Therefore, $he terms in al2 and Cl3 involving ti2 and G3 i.e., 
a ati2 

I 1 
a -- 

ax2 ax1 and - aii, 
I 1 
--, 

3x3. 3x1 
are both O(6) or smaller and can be neglected. 

Deletion of these terms is fundamental to the parabolic approximation, 

since their elimination removes the elliptic boundary value character in the 

chordwise flow direction. The existence of &- (i;iiliil) instills an initial 

value character in the resultant equation, henck, permits marching the solution 

for ii1 in the chordwise direction. The desired 3DPNS form, denoted Lp(=), is 

therefore, 

\ ali 1 + -gl + 2 
= 

r- .- 
ax2 1 Pu;us - al2 I 

t &[m-0131 =o 
3 

which is thoroughly familiar. As a final note, should Xj correspond to a 

curvilinear coordinate description, the derivatives expressed in equation 11 

are interpreted as covariant derivatives. The 3DPNS form of the energy 

equation (3), similarly constructed, is 

W) 

Equation 12 introduces the 3DPNS limited index summation convention 

1 2 (i,j) < 3 and 2 < R < 3. - - - 

In agreement with boundary layer concepts, the order of pressure variation 

in the transverse plane is assumedcontrolled by the lowest order terms appear- 

ing in equation 2 written on U2 and ii,. Each transverse derivative of pu;uj 

and pu;u: 
J 

is O(l), whiie all other terms are O(s) and higher, Thus, fort a 

conventional two-dimensional' boundary layer flou, for example, 

(13) 
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The solution is trivial; p differs from the inviscid flow edge pressure by a 

constant, equal to a fraction of the free-stream turbulence (k) level, and is 

distributed through the boundary layer in proportion to m. The initial 

value character for pressure, as exhibited by the 3DPNS first order approxi- 

mation to equation 2,for ii2 and D3 , is recast into a more tractable form by 

taking the divergence. Retaining the higher-order convection and diffusion 

terms for generality, the consistent 3DPNS form for both transverse momentum 

equations is 

L(ip)=$+C 
-- 

11 r Pti,Uj aXjaX,l _ L - . ..-(s + puu 1 9 =. 

Equation 14 defines an .elliptic boundary value problem for determination 

of pressure distribution in the transverse plane. The pressure field that 

satisfies this quasi-linear Poisson equation consists of complementary and 

particular solutions, i.e., 

) + pp(xi) 

(14) 

The complementary solution satisfies the homogeneous form of equation 14, i.e.? 

LP(Pc) ='3 = 0 (16) 

The Dirichlet boundary condition for equation 16 is pc(xl, ia) = p(xl, x,), on 

the intersection of the 3DPNS domain with the exterior potential flow domain . 

Elsewhere, the boundary condition for p, is homogeneous Neumann. 

The particular pressure is any solution to equation 14 subject to homogeneous 

Dirichlet boundary conditions on boundary segments where p, is known. Elsewhere, 

the nonhomogeneous Neumann constraint is provided by the inner product of tli? 

3DPNS form of equation 2, written on ua. , with the local outward pointing unit 

normal Ga. 

(17) 

10 



Repeated indices in equation 17 are not summed, and 2 2 k 5 3 for k f R. 

Hence,equation 17 is the generalization of the boundary layer form, equation 13. 

Following determination of the order of terms in the Reynclds stress tensor in 

the next section, the nonhomogeneous terms in equation 17 vanish to lowest 

order on an aerodynamic surface. Hence, thereupon pp(xl, Xa) is a constant 

which 1s zero. Elsewhere on the 3DPNS domain boundary, equation 17 yields the 

appropriate boundary condition for equation 14. 

Reynolds Stress Tensor Closure 

A closure expression for the kinematic Reynolds stress tensor -u;u; , 

appearing in equations 4-5, is required to complete the 3DPNS order of 

magnitude analysis. The necessary insight is provided by construction of a 

tensor field strain-rate constitutive equation, the existence of which is 

assured at "sufficient" distance from boundaries in space and time p9]. 

Using lower-dimensional order of magnitude analyses and invariance, the 

three lead terms of the five term expansion of the kinematic form, appropriate 

for 3DPNS analyses , are [2O], 

k'2 -U.U. = -ka.. ' C~~ij ' CnC~~Eik kj ' ... 
k3- i 

1 J 1J (18) 

iij is the symmetric mean flow strain-rate tensor, equation 8, and k and E 

are turbulence parameters defined in equations 9-10. 

Equation 18 results from re-expression of the triple correlations, within 

the Reynolds stress transport equation, using the model of Launder, Reece and 

Rodi [17] , and is the tensor generalization of the original analysis by 

Gessner and Emery DOI. In equation 18, clij is a diagonal tensor in the prin- 

cipal coordinates, defined as 

Yj (19) 

The aL are coefficients admitting anisotropy, where al - Cl, and a2 = C3 q a3. 

The Cu, are defined [17] as 
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22(Col - 1) - 6(4&z - 5) 
Cl = 

33(COl - 2Co2) 

4(3Co2 - 1) 

cp 3 ll(COl - 2co2 

22(&l - 1) - 12(3C02 - 1) 
CJ = 33(COl - 2Co2) 

44c02 - 22ColC02 - 128&z - 36C;z + 10 
cq 3 165(Col - 2C02)' 

In equation 20, C"1 and Cc2 are "universal" empirical constants; suggested 

values are Co1 z 2.8 and Co2 I" 0.45, [18]. 

The order of terms in equation 18 can be estimated for the standard 

values Ccc = 10.94, 0.067, 0.56, 0.0681. For significance in equation 2, recall 

O'upl~) = o(s). For a two-dimensional flow, and for i = 1 and j = 2, equation 

18 yields the familiar form 
k2 aul 

-- -'i'i = '4 E ax2 
(21) 

Hence, O(C4k2/E) = O(62). Further for i = 1 = j, and neglecting the second 

two terms, O(k) = O(S), hence O(C~/E) = O(1). To proceed further requires 

an estimate of the magnitude of O(k). For a steady, subsonic, turbulent aero- 

dynamic flow, away from the influence of the wall or freestream, the magnitude 

of the fluctuating component of velocity will probably not exceed about 10% of 

the steady component. Hence, equation 9 in nondimensional form yields the 

estimate O(k) 5 O(10B2). Taking the maximum yields O(6) 2 O(10B2); evaluating 

the fourth term of equation 20 and comparing yields O(&) z O(S'"), hence 

O(E) = o(6’). Thus, O(C2C,+g > :: O(62). Therefore, in rectangular Cartesian 

coordinates, and retaining terms of the first two orders of significance, the 

six components of the kinematic Reynolds stress tensor for a 3DPNS analysis are 

12 



u;ui = Clk - 

2 
7 
wJ2 = C8k - C2C& $+ 

1-l 
_ 2Csk2 & 

Ll 
-- 

2 E ax 

u;u; = C3k - C2C$; 
_ 

u;ui= 
_ c k2 a& -- 4 

c I E ax2 
_ C2C4g ai1 

[ [ 
ah -- 

E ax3 .ax3 
, aG3 ax2 1 
-i 

+ ,ail 
I 
ail -- + a& 

ax2 ax1 ax2 11 

uiu; = 

+ 2aiL[aiil + ai 
ax3,axl ax3 ii 

u;u; = _ c2c4J%L ah 
1 I 
-- 

E ax2 ax3 
_ c k2.-aU2 + au3-' -- - 

4~ ax3 ax2 -. 
(22) 

Two conclusions regarding equation 22 should be noted. The terms which 

would provide an elliptic boundary value definition in the x2, x3 plane, for 

direct integration of equations 2, for ii2 and iis, cf. [21], are indeed O(A2), 

in agreement with the ordering arguments leading to equation 14. Secondly, the 

O(6) term in -ujug in equation 22 vanishes on an aerodynamic surface, hence 

thereupon pp is a constant. With this development, the order of terms in equa- 

tions 4-5 can be determined, yielding the appropriate 3DPNS approximation as, 

(23) 
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LP(4 = &(p$ E) + jy c&UrUQ gf] 
i i [ 

=0 (24) 

recalling the 3DPNS limited summation convention, 1 < i < 3, 2 < R < 3. - - - - 

Definition of boundary conditions for equations 23-24 requires addressing 

the issue of what constitutes "sufficient" distance for validity of equation 

18. For two-dimensional flows, one approach is to employ similarity arguments 

to assign values to k and E at some distance from the wall, e.g. 10 < y+ < 50, UTX2 
where y+ : -Y- is a turbulence Reynolds number based on wall shear velocity U E m , lee [16]. Extension of this concept to three-dimensional flows 

iz questionable, but has been attempted [21]. A second alternative p2] 

suggests modifying the "constants" Ci appearing in equations 23-24, and 

integrating directly through the low turbulence wall region with k q 0 - E as 

boundary conditions. 

The alternative approach of i23] is employed for the juncture region 

analysis. The "constants" Ccr of the Reynolds stress constitutive equation 

18 are modified to account for low turbulence levels in the sublayer region. 

Equation 21 defines the conventional turbulent "eddy viscosity*' vt = C4k2/E. 

Using dimensional analysis, vt is the product of a scale velocity and a scale 

length; typically, for a turbulence kinetic energy model, 

Comparison with equat ion 21 y 

Recalling the van Driest damp 

vt z kl'a. 
d 

elds the familiar relationship 

Rd 5 c4 + 3/2 

(25) 

(26 

ng function W, defined to control evolution of 

the Prandtl mixing length scale 1161, equation 26 multiplied by o yields 

equation 21 in the form 

-uiui = w c,k2 a"ul 
E ax2 (27) 

14 



The conventional form p6i for ti is modified,. for variable length scale damping, 

as 

- exp(-by+/A+) 1 (28) 

where A' = 26, and b = 2.0 based upon results of numerical studies 123, 241. 

Therefore, premultiplying each of the coefficients Ca in equation 20 by w 

produces the required sublayer modification for equation 18. Furthermore, 

C: in equation 24 is alsc multiplied by W. The aerodynamic surface boundary 

conditions for equations 23-24 are then k = 0 q E. 

Differential Equation System Closure 

Development of the lowest order parabolic Navier-Stokes differential 

equation system, as a subset of the steady, time-averaged Navier-Stokes system 

is complete. This 3DPNS system, equations 11, 12, 14, 18, 23 and 24, numbers 

one less than the number of dependent variables defined in equations l-10. 

Therefore, at least one equation governing O(s) phenomena must be included to 

close the system. Since the 3DPNS momentum equation 11 is written on til only, 

both components of ua : {u2,ij31 are required determined subject to the con- 

straint of continuity, equation 1. The finite element algorithm accomplishes 

this by "penalizing" the solution of the O(S) 3DPNS approximation to the momen- 

tum equations 2, written on both components of IUa, by the continuity equation 

(error). Retaining the first two orders of terms, the 3DPNS form for the 

transverse momentum equations is, 

LP(,tik) = k Pdltik 
[ 

+ pu;llk' 
1 (29) 

+ $yPii2iik + q + b”ka - 
R 1 a. ] ‘= 0 KR 

which introduces the additional 3DPNS limited index 2 < k < 3. The middle two - - 
terms in the second bracket are O(S), while the remaining terms are all O(rS2) 

or smaller. Equation 29 exhibits elliptic boundary value character in the 

x2' x3 plane, retaining the terms of 0(62) in the Reynolds stress tensor, 

equation 18, and contains the initial-value term permitting chordwise marching. 
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Since equation 29 represents two additional scalar equations, an auxillary 

dependent variable is required defined. The theoretical concept, borrowed from 

the variational calculus, is to define a suitable measure of the continuity 

equation (error), which is then applied as a differential constraint on solu- 

tion of the transverse momentum equation 29. This constraint measure must span 

the transverse plane R2, and must vanish as the continuity equation 1 becomes 

satisfied. Based on computational experience [23], an appropriate dependent 

variable is the harmonic function @(xl?), defined as the solution to the Poisson 

equation 

(30) 

subject to homogeneous Neumann boundary conditions on portions of the domain 

boundary aR, and setting 4 = 0 at one location at least on aR. Equation 30 

becomes homogeneous, as the continuity equation becomes satisfied, and the 

solution I$(x,) becomes null as a consequence of the boundary condition 

specifications. 

Grid Stretching Transformation 

An elementary grid stretching coordinate transformation is of potential 

use for the general problem class, and is consistent with the ordering simpli- 

fications yielding the 3DPNS equation system. The transformation pi = ni(xj) 

that normalizes transverse spans with boundaries f,i' 2 < R c 3, 1 < i < 2, is - - - - 

f 
Xl 

- fZl(Xl) 

rf,,(xx:, - f21h)l/f2 C~i} ’ 
1 

x3 - f31oh) 
[f320(1) - f31bl)l/f3 

(31) 

The flli(xl) are piecewise continuous segments defining the transverse plane 

boundary aR of R2, and the fll are normalizing coefficients. Using the chain 

rule, differentiation on x1 introduces additional derivatives on ng. In 

particular, 

16 



v= arll - [hz2 + r,2h&J k - [ha2 + Q3h331 k a a 
axI 

a a 
- = hzl2 ax2 

a a - = h"lK 
ax3 (32) 

The functions h,,, 1 2 i 5 3, are defined as 

(33) 

The superscript prime denotes the (ordinary)?derivative with respect to x1, 

and the ni coordinate system is fixed in the transform space. 
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FINITE ELEMENT SOLUTION ALGORITHM 

The consistently ordered 3DPNS equation system has been constructed for the 

dependent variable set qj(xi) q (q} = {p', "ul, ti2, tis, M, i;, k,e, u;u;, +}T. 

An equation of state c = ~(p, H) closes the system. Equations 11, 12, 23, 24, 

and 29 of the 3DPNS equation set contain the initial-value term that facili- 

tates solution marching in the chordwise direction. Equations 14 and 30 are 

elliptic boundary value descriptions with parametric initial-value dependence, 

while equation 18 is a local constitutive definition. Equation 1 becomes 

recast as the differential constraint using equation 30. 

The general form of 3DPNS system description is 

(34) 

For equation 34, gRj and sj are specified non-linear functions of their argu- 

ments, as determined by the index j. The three-dimensional partial differen- 

tial equation 34 is defined on the Euclidian space R3 spanned by the xi(.ni) 

coordinate system. The solution domain n is defined as the 'product of R2 

and x1, for all elements of x1 belonging to the open interval measured from 

x1(O), i.e., 
,c z R2 x xl = ((xg,xl): xYcR2 and xlc[xl(0),xl)l 

The boundaryanof the solution domain is the product of the boundary aR of R2 

and x1, i.e., as1 = aR x x1. Thereupon, a differential constraint is applied 

of the form 

'(qj > 

a = alq. + a2 r q.n^. + a3 = 0 J i J’ 

In equation 35, the ai are specified coefficients and iii is the outwards 

pointing unit normal vector. Finally, an initial distribution for the 

appropriate members of q. on fig q R2 x x1(O) is required. J 

(35) 

9j (xiSxl) ' qglxf,) 

18 
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For the finite element numerical solution algorithm of equations 34-35, the 

approximation qi(xg, xl) to the (unknown) exact solution q-(x 
J R’ xl) is con- 

structed from members of a finite-dimensional subspace of Hi(n), the Hilbert 

space of all functions possessing square integrable first dgrivatives and 

satisfying the boundary condition 35. While extremely flexible in theory, the 

practice for the 3DPNS equation system is to employ linear polynomials, 

defined on disjoint interior triangular-shaped subdomains Rg, the union of 

which forms the discretization of R2. Hence, the finite element approximation 

is 

using the elemental construction 

q;(xQ.xJ - INL(x,)IT{QJbde (38) 

In equations 37-38, j is a free index denoting members of {qh}, and subscript 

or superscript e denotes pertaining to the eth finite element, tie E R; x x1. 

The elements of the row matrix {Nl(xe)lT are linear polynomials on xI1, 2 < - 
R < 3, 1281, and elements of {QJ), are the values of qi at the nodes of R; . - 

The functional reql#irement of any numerical solution algorithm is to render 

the error in qi minimum in some norm. The finite element algorithm requires 

the error in equations 34 and 35, i.e., L P h (q.) and a(qi), to be orthogonal 
hJ 

to the space {Nl(xE)l employed to define qj. In addition, the discrete approx- 

imation LP(ph) to the continuity equation 1 must b. c enforced as a differential 

constraint. Identifying the (Lagrange) multiplier set Bi, these linearly 

independent constraints are combined to yield the finite element solution algo- 

rithm theoretical statement. 

Equation 39 represents a system of ordinary differential equations, written 

on the chordwise coordinate x1, of the form 

[C]CQJ>’ + CWQJ} + [GLJ]{QLl + {SJI = (0) (49) 
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A one-to-one correspondence of terms in equations 40 and 34 is inferred, as 

augmented for the various additional terms introduced through fii # 0 in 

equation 39. The integration algorithm for equation 40 is the trapezoidal 

rule; hence, 

{FJ} ~ IQJ}j+l - CQJ}j ,-*~[{QJ}~+l + CQJ}gI - (0) (41) 

defines a system of nonlinear algebraic equations for determination of the 

elements of IQJ(xl).l. A Newton iteration algorithm is employed for solution 

of equation 41 as 

CJ(FJ)]~+lI~Q~~!$ = -{FJ}~+~ (42) 

The dependent variable in equation 42 is the iteration vector, related to 

the solution (QJ}j+l in the conventional manner, 

P+I 
{QJl -’ = rQJIP 

P+I 
+ 1sQJl (43) 

j+l j+l j+l 

The algorithmic embodiment of the differential constraint concept 

employs a sequential summation into the column matrix denoted $2 
f 

v{NklLp(ih)dz 

in equation 39. A numerically determined optimum expansion coefficient is 
n ,. 

$2 3 Ax,Ij,kI, where j and i are unit vectors parallel to xR. In the trans- 

verse plane momentum equations, this term corresponds to a load (column) 

matrix, say (G2PHIl for u2. Letting (PHI }i+1 denote the nodal solution for 

oh(x,) at iteration step i then 

(44) 

where vh denotes the integral of the discrete gradient operator on the mesh 

of measure h. This contribution is then added to the sum of the previous p 

evaluations for +h, to construct the action of the differential constraint 

term for step (Ax~)~+~, iteration p+l, i.e., 

p+l P 
. 

CGU2) 
j+l 

c IG2PHIl' ' i=l j+l 
(45) 
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Hence, each successive determination of {PHI) corrects the action of all 
j+l 

previous solution iterates, such that lPHI1i+l +{E) as p increases without 

bound, where IEl > 0 is an acceptable discrete level of computed zero. This 

procedure thus admits, in the limit, the exact continuity preserving solution 

for equation 30, i.e., 4 = 0 everywhere. Additional discussion on details of 

algorithmic constructions are given in the Appendix. 

THEORETICAL ANALYSIS, ACCURACY AND CONVERGENCE 

The 3DPNS equation system contains as a subset the two-dimensional 

boundary layer equations for laminar or turbulent flow. For these elementary 

systems, a finite difference truncation error analysis confirms the linear 

basis finite element formulation is spatially second-order accurate. Of 

course, the trapezoidal rule employed for chordwise marching is also second- 

order accurate. A formal analysis of convergence in Sobolev norms, [26] for a 

scalar linear parabolic equation,-predicts the error eh in the semi-discrete 

linear basis finite element approximation qh satisfies the inequality, 

(46) 

where Cl is a constant independent of de, the measure of the largest finite 

element on R . Furthermore, C2 is a constant independent of A,, ax1 is the 

space-marching step, and I IQ,1 1: is the "energy" in the initial data. Hence, 

equation 46 confirms the solution error is bounded by a constant times a term 

of order A;, i.e., second-order accurate. Furthermore, from the fundamental 

theorem l27], the semi-discrete approximate solution converges in energy, i.e., 

Etch, Ed) + 0 as +e -f 0 (47) 

The strongly nonlinear 3DPNS (and turbulent boundary layer) differential 

equation systems are significant departures from the elementary equations 

considered in 126,273 . For example, the energy norm E(.,.) is evaluated as 
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(48) 

The "effective" turbulent diffusion coefficient v t f C4k2/e is a strongly 

non-linear function of q!J, with both k and E exhibiting nearly singular 

behavior in the sub-layer region immediately adjacent to an aerodynamic 

surface. Nevertheless, the results of closely controlled numerical experi- 

ments [28, 291 have predicted extension of the linear theory, for the boundary 

layer equations, as well as providing exact comparisons between the k = 1 

finite element algorithm, and the equal complexity (and familiar) Crank- 

Nicolson finite difference algorithm. 

The fundamental theoretical aspect of critical importance is quantization 

of performance of the penalty continuity constraint on the transverse momentum 

equation solutions. The classical concept of the penalty construction for a 

linear elliptic statement [26] defines the parameter z2 => ~0 as the (norm of 

the) penalty term approaches zero. For the nonlinear parabolic Navier- 

Stokes system, and following extensive numerical experimentation, 

z2 = Axlrj+i;] was determined preferable in optimizing the number of iterations/ 

step to convergence. Using the outlined accumulation procedure, equations 

it;j equation 

layer flow, 

44-45, the penalty algorithm yields satisfaction of the continu 

in energy to the order of E($h,$h= G(10B8) for laminar boundary 

E(+h, +h) z O(10W6) for turbulent boundary layer flow, and E($h 

for 3DPNS solutions. 

, +h) J o(10-5) 
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PROBLEM ANALYSES 

Idealized Wing-Body Juncture Flow 

The documentary test case configuration, for the developed 3DPNS algorithm 

and the CMC:3DPNS computer program, is turbulent flow in the juncture region 

formed by the right intersection of two lo-percent thick parabolic arcs with 

coincident leading edge. A complete discussionof the CMC:3DPNS program 

input and data deck preparation procedures is presented in Volume II of this 

report. The computer program documentation manual for the CMC:3DPNS code is 

published as Volume III. 

Figure 2a illustrates the essential geometry of the parabolic arc juncture 

specification. The complementary pressure (p,) boundary conditions for the 

3DPNS solution were obtained using the Hess potential flow computer code [30], 

for Mm = 0.08 (U, = 30 m/s z 100 f/s) and zero angle of attack. Figure 2b) 

summarizes the resultant spanwise distributions of p,(x,) at chord stations 

xl/C = 0.01, 0.085, and 0.46. By symmetry, these pressure boundary conditions 

are also appropriate at x,/C = 0.54, 0.915, and 0.99. Therefore, a progres- 

sively decreasing favorable x1 pressure gradient exists to mid-chord, and 

thereafter turns progressively adverse. The strongest gradients are confined 

to the immediate vicinity of the corner. 

The 3DPNS solution domain was defined to span 0 (x~/C 5 0.1 and of height 

xk/c : 0.01. Figure 3 illustrates a nonuniform discretization of the trans- 

verse plane R2 as the union of triangles (with most diagonals omitted for 

clarity). The domain boundary aR is the union of straight line segments A-F, 

upon which boundary condition specifications are required for the dependent 

variable set qi(xe,xl), see Table 1. The Reynolds number is Re/C = 0.6 x 106/m, 

and the flow is assumed isoenergetic, hence i(xi) = constant. The initial 

conditions for uy(x%), at the nodes of R2, are established using Cole's law to 

interpolate a turbulent boundary layer profile onto node "columns," Figure 3, 

with matching of the free-stream level of p,(x,). The transverse plane velo- 

city tik(xe) is defined identically zero, until eight 3DPNS steps are completed, 

to permit computation of a reasonable chordwise derivative of Pulr e.g., 

{RHOUlI'. The initial distributions for k"(xe) and Ed' are computed using 

boundary layer mixing length concepts , as discussed in detail in [23]. Each 
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xX3 
a) Geometry. 

Span Coordinate - X,/C 

b) Inviscid Pressure Distribution 

Figure 2. Characterization of lo-Percent Thick 
Parabolic Arc Juncture Region. 

Figure 3. Finite Element Discretizaticn of 
R2 for 3DPNS Solution. 

Span Coordinate - x3/C 
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Dependent Equation Boundary 
Variable No. Seqment 

ii 
R 

k 

TABLE 1 

Boundary Condition Specifications for 

3DPNS Analysis of Aerodynamic Juncture Region Flow 

11 

29 

23 

24 

16 

14 

30 

ABC 

EDEFA 

ABC 

CDEFA 

Al:C 

CDEFA 

ABC 

CDEFA 

DEF 

FABCD 

ABC 

CDEFA 

DEF 

FABCD 

Boundary Condition 
Statemenf,Equa_tion 35 we .-- 

a1 a2 a3 

1 0 0 

0 1 r! 

1 0 I! 

0 1 0 

1 0 0 

0 1 0 

1 0 '0 

0 1 3 

1 0 yi 

0 1 0 

1 0 0 

0 1 0 

1 0 3 

0 1 0 

Comments 

No-slip Surface 

Vanishing Derivative 

Potential Constraint 
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of these initialization procedures is a CMC:3DPNS input specification, 

discussed in detail in Volume II. 

The standard test case specification is 3DPNS solution of the parabolic 

arc juncture region turbulent flow on the interval 0.01 < xi/C < 0.60, using - - 
the 10 X 19 node nonuniform discretization shown in Figure 3. The corres- 

ponding number of triangular finite element domains is M = (10-1)X(19-1)X2 + 1 

= 325. On this grid, the 3DPNS algorithm takes 170 chordwise steps and 

averages 4.3 Newton iterations/step for convergence set at E = 0.0003. On 

the NASA Langley CDC Cyber/203 computer, with no vectorization of the scalar 

CMC:3DPNS code, this execution requires 475 seconds of CPU time. For com- 

parison, the same execution on an IBM 370/3031 computer requires approximately 

6000 seconds of CPU time. The central memory requirement for both executions 

is 150,000 words. During the 3DPNS solution, the distribution of the particu- 

lar pressure solution pp(xR,xl) is written on an output file at each chord- 

wise station x1 for which the p,(x,, xl) boundary condition is specified. 

For the second and sequential 3DPNS solutions, the solution of equation 16 

for pc(xa,xl) is algebraically summed with the stored distributions pp(x,, 

x,)3 see equation 15, and this sum employed for the chordwise pressure 

gradient distribution for the '?I~ momentum equation solution, see equation 11. 

The ii, momentum equations are solved using the current computed pp distribu- 

t,ions. The composite pressure field p(Xi)/po, equation 15, converges to five 

significant digits following three 3DPNS algorithm solutions, for the standard 

test juncture region geometry. The nominal level of pp/po is 10m3; a repre- 

sentative extremum difference between the second and third 3DPNS solutions is 

APp/Po = 10 -5 at xl/C = 0.17. 

The 3DPNS solution computes and outputs the distribution of qi(x,,xl) at 

select chordwise stations x1. Figures 4-5 illustrate qualitatively 'the third 

interaction 3DPNS solution for transverse velocity ii, for the parabolic arc 

juncture. Figure 4 graphs the complete transverse plane velocity distribu- 

tion Ua(xa) at xl/C = 0.31 on the M = 325 grid. The solution is exactly 

mirror symmetric, a generated vortex pair in the corner is just distinguish- 

able, and the solution computes a spanwise efflux of ii, from the 3DPNS domain. 

Figure 5 summarizes the M = 325 grid solution evolution of the lower surface 

distribution of iia(xa) on 0.021 < x /C < 0.7. (The truncated upper portions - - 
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Figure 4. 3DPNS Solution for Transverse Plane Velocity Ga Distribution, 

Parabolic Arc Juncture Region, xl/C= 0.40, M = 325, Turbulent Flow. 

27 



a> xl/C = 0.021, $/iii = 0.167 

b) x1/c = 0.047, iii/G, = 0.072 

d xl/C = 0.081, ii;/ii, = 0.058 

O.OOO 0.017 0.034 0. c5.1 0 . cm O.OES c. 122 

d) xl/C = 0.173, O;/iil = 0.112 

Figure 5. 3DPNS Solution for Transverse Plane Velocity fia 

Distributions, Parabolic Arc Juncture Region, Turbulent Flow. 
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e) .x1/c = 0.349, iim/al = 0.114 

f) xl/C = 0.502, $/ii, = 0.102 

9) Xl/C = 0.631, ii;& = 0.098 
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Figure 5. Concltided. 
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are exactly mirror symmetric.) A massive influx into the corner region is pre- 

dieted at xl/C = 0.021, with the extremum scalar component i$/ii = 0.167, i.e., 

equal to 17% of the local free-stream value of il. This is the direct result of 

the associated large favorable pressure gradient for ul, coupled with the fact 

that the mass conservation algorithm has just become initialized. By xl/C = 

0.047, the extremum scalar component is tit/U, = 0.072, and the juncture blockage 

is inducing a large spanwise efflux from R2 in the lower reaches of the boundary 

layer. A corner axial vortex (pair) is just visible at xl/C = 0.081, where the 

minimum level of ua is predicted. This general velocity distribution persists 

to well beyond mid-chord, with i$/Ul = 10% throughout. The corner vortex pair 

becomes fully developed, with the spanwise efflux filling the entire boundary 

layer. Past mid-chord, the free-streamvelocity derivative changes sign, with 

a concurrent cessation of influx from the potential region into the corner 

indicated by xl/C = 0.63. 

A repeating of this solution for laminar flow provides an additional quali- 

tative accuracy assessment. Figure 6 compares the 3DPNS transverse plane 

velocity distributions at xl/C-= 0.46, for laminar and turbulent flow solutions. 

In comparison, the corner vortex pair is slightly larger for laminar flow, the 

extremum component UT/ii, = 0.06 is 40% smaller in magnitude, and a reversed 

spanwise flow is predicted in the lowest reach of the farfield boundary layer, 

Figure 6a). Shafir and Rubin 1311 predict theoretically this lower reach 

reversal, for laminar-turbulent boundary layer transition, see Figure 7. 

Furthermore, theflow-fieldsin Figure 6 are in qualitative agreement with the 

composite corner layer/asymptotic boundary layer solution reported by Rubin 

and Grossman 131. 

Figure 8 is a composite summary of pertinent transverse plane isoclines 

of "ul and components of u'u': at xl/C = 0.46, as predicted by the third inter- 

action 3DPNS solution. TieJiil solution exhibits the intrinsic symmetry with 

a modest relative displacement directly adjacent to the corner, the result of 

the axial vortex pumping low momentum fluid into the corner and out parallel 

to the diagonal, Figure 6,(b). The plot of u;uT.is also symmetric, and a local 

extrema exists in the corner due to the axial vortex pumping of the wall layer 
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b) Turbulent Flow, iiT/til= 0.10. 

Figure 6. 3DPNS Solution Transverse Plane Velocity Ga 

Distribution, Juncture Region Flow, xl/C = 0.46. 

I WT.1 
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W”r 

Figure 7. Boundary Layer Laminar/Turbulent Transition Solutions 

In Juncture Region Farfield, from Shafir and Rubin [31] 
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Figure 8. 3DPNS Solution Summary, Parabolic Arc Juncture Region, 

Turbulent, Re/C = 6.X 105, M, = 0.08, xl/C = 0.46. 
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flow into the corner. These comments are valid for the distribution of m, 

except that this normal stress exhibits a (very) modest nonsymmetry due to the 

O(S) terms involving u1 in equation 22. The u;u; shear stress distribution is 

highly nonsymmetric with the extremum level penetrating only half the span 

distance to the corner. On the upper-half domain, these levels are very small 

since u1(x2) is a weak function of x2 along the vertical span. Of course, u;u; 

is a mirror symmetric reflection of u;u;. 

Reynolds Stress Closure Verification 

No complete experimental data set exists for quantitative comparison of 

the juncture region turbulent flow 3DPNS prediction. For this geometry, the 

initially steep chordwise pressure gradient is principally responsible for 

generation of the axial vortex pair. Thereafter, in the mid-chord region, 

the combined action of milder pressure gradients and Reynolds stress distribu- 

tions govern the detailed flow-field evolution. The typical experimental juncture 

region geometry, cf. 112, 131, is constructed as the right intersection of two 

plane surfaces with noncoincident leading edge. One surface is the wind tunnel 

floor, while the second is a rounded leading edge, nonfilletted, finite thick- 

ness flat plate mounted perpendicular to the floor. The resultant three-dimen- 

sional, separated stagnation region flow yields a pressure-gradient induced 

roll vortex, in the "wing" leading edge region, which is then convected down- 

stream under nominal zero axial pressure gradient. 

An experimental configuration that specifically facilitates the Reynolds 

stress closure verification is turbulent flow in a straight, uniform rectangular 

cross-section duct, cf. [ll]. Following the localized entrance region effects, 

the mild axial pressure gradient is nominally uniform on the cross-section and 

of magnitude sufficient to compensate for duct friction losses. Far downstream, 

experiments verify that no consequential transverse plane vellocities exist for 

laminar flow. Conversely, for a turbulent flow, four persistent axial vortex 

pairs exist, one in each right angle corner of the duct. For the experimental 

specffication of [ll], Baker and Orzechowski [32] document qualitative agree- 

ment for the 3DPNS.algorithm prediction on a coarse 13X13 (M = 288) discretiza- 

tion of the symmetric quarter duct. Specifically, no vortex pair roll-up 

occurred for the laminar floti, or for the turbulent flow prediction 'with the 

O(6). terms involving i,il derivatives in u;cu; set to zero, see equation 22. 
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However, with these terms included, as required theoretically by invariance 

within the constitutive theory, the turbulent flow 3DPNS prediction immediately 

generated the corner vortex pair. Therefore, in this instance of a nonpressure 

driven flow, the anisotropy of the Reynolds stress tensor is principally respon- 

sible for generation of the axial vortex pair. 

With the CMC:3DPNS code now operational on the CDC Cyber/203, refined 

grid and full-duct solutions for the configuration of [ll] have been executed 

for quantitative comparison to experimental data [ll] for transverse plane 

distributions of tii and uiui at a downstream station. Figure 9a), from [11], 

is the experimental measurement, of transverse plane velocity distribution 

U&XI = 37, x,), with ut/ul= 0.0086. Figure 9b), from [32], is the coarse 

(M = 288) grid 3DPNS solution on the symmetric quarter duct, which exhibits 

essential qualitative agreement with data. However, ;F /ul = 0.0010 is a 

factor of eight lower than the data, and large vortex patterns are erroneously 

produced adjacent to both symmetry planes. Figure 9c) is the refined (M = 1052) 

grid solution on the symmetric quarter duct. The qualitatively correct vortex 

patterns nearly fill the section, and tit/u1 = 0.0043 is only a factor of two 

lower than the data. The erroneous vortices remain predicted next to both 

symmetry planes, but their size is substantially reduced in comparison to 

Figure 9b). The combined M = 288 and M = lj052 solutions confirm that the error 

mechanism causing this local pollution of the solution is a singularity 

in the boundary conditions for the mass conservation harmonic function eh(x,), 

where the symmetry plane intersects the wall. Since a velocity component is 

permitted (must occur) parallel to the symmetry plane, but not along the no- 

slip wall, the intersection corresponds to a discontinuous switch from homo- 

geneous Dirichlet to homogeneous Neumann boundary conditions at a corner. 

Removal of this singularity requires the 3DPNS solution domain to span the full 

duct cross-section. The 3DPNS solution executed on a coarse ( M = 1052) grid 

discretization of the entire duct, did predict extinction of the spurious vor- 

tices. However, the extremum transverse velocity ui/ul = 0.0020 is a factor of 

four lower than data, indicating the discretization too coarse for qualitative 

solution comparison. Hence, a 50 X 50 (M = 2500) discretization is thus 

indicated as the refinement required for a 3DPNS simulation of a ducted 

turbulent flow. 
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a) Experimental [ll] 

q/ii 1 = 0.0086. 

b) 3DPNS Solution [32] 

M = 288 

-m - 
ug/u 1 = 0.0010. 

Figure 9. 3DPN6,and Experimental Distri.butions of Transverse Plane Velocity i,, 

Turbulent Rectangular Duct Flow. 
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c) 3DPNS Solution, M = 1052, Gi/iI= 0.0043 

Figure 9. Concluded 
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Reference [ll] also documents experimentally measured distributions of 

iii, k, and ui1.15 at the downstream station. Figures lo-17 compare these data 

with the 3DPNS solution obtained on the M = 1052 quarter-duct discretization. 

Figure 10a) indicates intrusion of the high momentum core velocity ii1 into 

the corner region , as induced by the vortex structure, Figure 9a.). The 3DPNS 

solution exhibits this character for ii1 z 0.70 only, Figure 106). The inter- 

section of the 3DPNS iil = 0.70 isovel with the symmetry plane is in good 

agreement with experiment. Above this level, and on the symmetry planes, the 

intersection of 3DPNS levels for iil exceed data by AXR z 15%. Along the corner 

bisector, the levels are in better agreement. 

Figures 11-13 compare the Reynolds shear stress distributions. Good over- 

all agreement on level is indicated, as well as some detail of the contour 

shapes for the largest levels. The experimentally measured regions of small 

negative (uiu;) and small positive (uiu?j) shear stress result from the curve 

inflections in iii, Figure lOa), The 3DPNS solution has correctly predicted 

this essential character, although the details are largely affected by the 

boundary condition singularity effects. This is clearly illustrated by the 

"ears" on the 3DPNS prediction of m, Figure 13. No experimental determin- 

ation of this shear stress component is reported in [ll], since the signal to 

noise ratio at O(10D4) is essentially unresolvable. 

Figures 14-17 summarize the comparison of the square root of the Reynolds 

normal stresses and the turbulence kinetic energy level. Overall, the agree- 

ment on levels of TIT is good, confirming use of the standard definitions for 

the constitutive equation model constants C,, equation 22, and the coefficients 

CB a in equations 23-24. The 3DPNS prediction for 'ii and k, Figures 14-15, are 

symmetric in agreement with data. The intrusion of the lower levels from the 

core region along the bisector is substantially under-predicted. The inter- 

section ofz = 0.075 on the symmetry plane is in good agreement, and the 

higher 3DPNS solution levels exhibit better agreement with data. The inter- 

section of TiT = 0.05 is different by Axll = 20%, indicating the level of turbu- 

lence in the experimental core flow is considerably larger than that of the 

3DPNS simulation, see also Figure 15. The 3DPNS solution initialization level 

ofk' ~10'~ in the potential core region is considerably smaller (probably) 

than the experiment. 
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a) Experimental [ll] 
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Figure 10. 3DPNS and Experimental Distributions, 

Mean Velocity iil, Turbulent Rectangular Duct Flow. 
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a) Experimental [ll] 
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b) 3DPNS Solution 

xl/D = 35.8. 

Figure 11. 3DPNS and Experimental Distributions, Reynolds 

Shear Stress -m X lo3 , Turbulent Rectangular Duct Flow. 
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a) Experimental [ll] 
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Figure 12. 3DPNS and Experimental Distributions, Reynolds 

Shear Stress -u;uc, X 103, Turbulent Rectangular Duct Flow. 
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Figure 13. 3DPNS Solution Distribution - Reynolds Shear Stress 
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Figures 16-17 compare the transverse plane normal stress distributions. 

Agreement on overall levels is considerably better, with the 3DPNS prediction 

exhibiting the essential nonsymmetries of the experimental data. Note the 

two 3DPNS solutions are mirror symmetric, while the data are less so. Most 

importantly, recall that these (modest) nonsymmetries are computationally 

confirmed to be the principal causal mechanism of the counter-rotating vortex 

structure for turbulent flow in a straight, rectangular cross-section duct. 
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a) Experimental [11] 

xl/D = 37.0. 

b) 3DPN.S Solution 

xl/D = 35.8. 

Figure 14. 3DPNS and Experimental Distributions, Reynolds 

Normal Stress -JU;U;, Turbulent Rectangular Duct Flow. 
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Figure 15. 3DPNS and Experfmental Distributions of 

Turbulent Kinetic Energy k X 103, 

Turbulent Rectangular Duct Flow. 
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a) Experimental [ll] 

xl/D = 37.0. 

b) 3DPNS Solution 

xl/D = 35.8. 

Figure 16. 3DPNS and Experimental Distributions, Reynolds 

Normal Stress -/ u;u; , Turbulent Rectangular Duct Flow . 
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CONCLUSIONS 

An order of magnitude analysis has yielded a consistent physical variables 

formulation for the parabolic approximation to the three-dimensional Navier- 

Stokes equations for steady, turbulent subsonic flow. A finite element numer- 

ical solution algorithm is derived that accurately enforces the dominant 

differential equation set through formulation of a penalty differential con- 

straint statement. A tensor field expansion is employed to provide closure 

for the Reynolds stress distribution, in concert with solution of two turbulent 

transport equations. A composite pressure field construction is identified to 

enforce overall ellipticity, using a multipass interaction solution procedure 

with a three-dimensional potential flow exterior solution. Numerical results 

document the robustness of the key elements of the developed algorithm for the 

aerodynamic juncture region geometry. 
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APPENDIX 

The finite element algorithm statement for the 3DPNS equation system is 

readily recast into equivalent FORTRAN statements using a hypermatrix formu- 

lational structure PO]. The operation basic to the finite element algorithm 

equation 39 is integration of products of the elements of the cardinal basis 

{No)) and the associated (gradient) derivative &- {Nl(xl?)l, for the 

discretization of R2 formed by the union of triangles! The master element is 

graphed in Figure A.l, which illustrates the various required coordinate 

systems including the linearly dependent natural coordinate system ri. The 

elements of {N1} are identical to ci, and for any domain Rz 

sp sq $ d; - Ae Pl q! r! 
.l 2 3 

R; 
- 2(2 + p + q Y r)! 

where Ae is the plane area of RE. Furthermore, 

{z;l = 

(A-1) 

(A-2) 

and 17: denotes the ;a. coordinate of node point ~1, for the sequencing defined 

in Figure A.l. The elementary transformation defining ta = :R(nk) is, 

rlR = a&k "k (A.31 

where aRk are the direction cosines defining t,.as the line connecting nodes 1 

and 2 of R2 . The derivatives of the elements of (N,(c)} are formed, using 

the chain rule and tensor index summation convention, as 

(A.41 
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Figure A.l. Coordinate System Descriptions for Ri. 
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Consider the first term of the 3CPNS generalized differential equation 

whereby the elements of qj(Xi) = {iii, ti2, iis, b, k, ~1 are marched in the 

chordwise (x1) direction. For the grid-stretching coordinate transformation, 

equation 31, and subtracting out the continuity equation 1, which yields the 

'/nonconservative form", this term becomes 

-_ a”j 
pul,axl 

a = ‘;fil an1 C 62 + n2h23)az2*+. (h23 + nsh33)k qj 1 (A-5) 

Employing the finite element construction equation to interpolate pG1 and 

na(c) on Rg, yields 

(&)h - z{N~(<)I~{RHOU~I, 
e (A.61 

nh - R = zIN,(r)ITIETALIe 
e (A-7) 

The elements of {RHOUl}e and (ETALIe are the nodal values of pii, and 11~. 

Then, the term corresponding to equation A.5 within the error extremization 

weighted residuals statement, equation 39, upon rearrangement of selected 

scalars, becomes 

T 
- h22 + h23 ~N1)T(ETAZIe w - (h32 + h,,INIIT{ETA3)e) 

1 
(A.8) 

Equation A.8 defines the global citlculus operations on R2 = UR: , as the 

matrix assembly (Se) of the equivalent calculations performed on the master 

element. (Baker '[20, Ch.21 discusses this topic in depth, and rigorously 

derives the matrix row summation procedures on Ri which constitute "assembly'!) 

Note also that the element matrices {RHOU~(X~))~ and {&I(x~))~ are indepen- 

dent of nk' and can be extracted outside the integral as shown. 
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Cons 

yields 

idering the first term in equation A.8, and expanding in terms of (5) 

I\ e 

= CRHOUl3; 

(RHOU13; D2~N~31N131N13Td; 
I 

(953, 

d;; (453, 

(A.9j 

Recalling the matrix rules of scalar multiplication, the column matrix 

premultiplier in equation A.9 can be brought inside by multiplying every 

element of 1.1 by (~1. This yields a 3 x 3 square matrix, every element of 

which is a 3 x 1 column matrix, i.e., a "hypermatrix" of degree one. The 

defined integrals of products of ci,l 2 i 5 3, are easy to evaluate using 

equation A.l, which yields the finite element matrix equivalent of equation 

A.9 as 

IRHOU13; I R21rii3{N1 e 

3{N;3Td%fQLJ3 = e k{RHO".l3; 

r 

bym> 
- l- 

E A~{RHOU13~[63OOO~~QJ~~ 

-. 

{QJ 
.* 
e 

(A.lO) 

In equation A.lO, Ae is the element plane area, and l/60 is the normalizing 

coefficient of the integers constituting the "standard" master hyper-matrix 

[B3000]. This lexicographic symbol indicates the master matrix is defined on 

a two-dimensional element (B), and is constituted of the product of three 

cardinal basis (3), none of which are differentiated (000). If a basis other 

than INI( were chosen, the specific entries in lB3000] would change, of 

course, but the symbolic representation in the final line of equation A.10 
remains unaltered. Matrix multiplications must clear the hyper-matrix rank 

first; thereafter, the regular rules of matrix algebra apply. 
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Returning. to equation A.8, the grid stretching coordinate transformation 

has introduced additional terms which involve derivatives of elements of 

Ml(r)1 On the nk' Using equation A.4, 

+1(5)3 = i1~~(x~){B1123~ $2 + h,l(x&B1133, ^e3 

R 

(A.ll) 

The elements of CBllK),, which are element-dependent, 3 x 1 column matrices, 

are strictly a function of the node coordinates 17: of Rz , see equation A.2, 

and the set a ak of direction cosines, equation A.3. The unit vectors ek 

are parallel to tke xI1 coordinate system, and the metrics hkl are functions 

of x1 at most. Therefore, equation A.11 is the matrix equivalent of the 

directional derivative with scalar components parallel to ii, . Then, on the 

master element, the second and third terms in equation A.8 are of the form 

IRHOU13$t4~3~N~3[-“Qn- h,, {NIITIETAL3,] '&3T d: IQJ3, 

= A,{RHOUl]; 
L- 

-h22 h,,[B200] - hz3 h2I[B3000](ETA23, IBll23-)QJ3, 1 
+ h,,[B200] - h33 h&3OOO]CETA23, Ie113]T,IQJj, 1 I (A.12) 

The master hyper-matrix [B3000 ]was defined in equation A-10; it is an ele- 

mentary operation to further show that 

[B200] = & 

2 1 1 F 1 2 1 

bym) 2 
(A.13) 
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In distinction to the comments regarding the universality of the symbol 

p3000] for all (kth degree) cardinal basis specifications &I, the form of 

equation A.13 would change if the elements of & C$} are functions of nR. 

The gerleral statement for equation A.8 is, '2 

I 
ha t! 

R; 
{N,3($, -$I dz = Ae IRHOUl3~[B300O]{QJ3; 

+ Ae IRHOU13; 
L- -h,2b,, [B3OOL3, - h,,h,, [B400L0]e{ETAL)e {QJ}, 1 

(A.14) 

In equation A.14, the index a(L) is a tensor index that takes the values 

2 5 (a,L) < 3. Furthermore, - [B4OOLOJ is a hypermatrix of degree two; the 

first and last Boolean indices (0) indicate {RHOUI}, and {ETAL}, are inter- 

polated, and these (inner) multiplications must be $erformed prior to post- 

multiplication by {QJ},, which has been differentiated parallel to nR(L). 

The remaining terms in the finite element algorithm statement, equation 39, 

are formed in the same manner 

The second major formulational step is construction of the Jacobian of the 

Newton iteration algorithm, equation 42. By definition, 

with {FJ 1 given by equation 41. Continuing with the example of the down- 

stream convection term, the specific form for the resultant expressions in 

{FJ} is 
{FJ) =Se Ae~R~13~[B3000~(IQJ3~+l - IQJ3j > 

(A.15j 

- $? FeIRm13: ,&2hp,[B300L,e 

+ hR3hlll[B400LOl,IETAL), (QJ3 ] + Jjil j ] (A*16) 
3 
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In equation A.16, (RH0~13, ! +(IRH~U$?+~ + h-tOu~~j), and AXE = X. J+l - 'j' 

is the chordwise marching step-size. Furthermore, l 1J+1 j indicates the 

algebraic average, and superscript p is the iteration index, see equation 43. 

For equation A.15, the independent variable is {QJ}p+lz; therefore, the elemen- 

tal contributions to p] become formed as 

a IFJ3, 
me 

= A,IR~13~[B3000]SJI 

- Ax;Ae ~RHOUl3~~h,,h,,cB3ooL] 
e 

+ h,,h,, rB400LO]{ETAL), 6JI 1 
atFJ3 

+ afRHOU1) 
a(RHOLil3 
atQI3 (A.17) 

In equation A.17, 6JI is the discrete index Kronecker delta, which yields the 

self-dependence expressions, i.e., a{FJI/a{QJI. Since ptiy, i.e., {RHOUlI, is 

a function of both i and ul, which are dependent variables, the second term 

in equation A.17 yields the nonself coupling. T!ie algebraic equation of 

state yields 6 = p(p,R); for subsonic flows, the density variation is very 

weak and therefore can be neglected in [J]. Using <he chain rule, then 

Hence, interchanging orientation in the hypermatrix formations, as required, 

yields aIFJ3 a CRHOUl3 AePe 

a(Rm13 "Q13 
= -ij-- (01 3;[B3000]6Jlf$1 

Ax lAePe 
4 IQI3$e,he,CB30001 

+ hR3hg,[B4LOOO]xETAL3e 6J1611 1 

(A. 18) 

(A.19) 
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In equation A.19, Pe is the element-average value of p' on Rg. The CMC:3DPNS 

computer code neglects all nonself coupling in construction of the Jacobian 
PI. Therefore, &lI is independent of the specific element of qi = (ul, ue, 

"us, H, k.Elt. Hence, the single LU decomposition of ,~(QJ)]~+, is employed tc 

solve for the appropriate six elements of IGQ}$:, using a multiple right-hand 

side procedure in equation 42. The Jacobian is updated for each iteration 

within step AX. 
J+l’ 

Equations A.14, A.17 and A.19 are illustrative of the operational procedures 

of formulation of the finite element algorithm statement for aerodynamic 

juncture region flow. There is an exacting amount of detail required to 

complete all aspects of the 3DPNS algorithm statement. However, the developed 

hypermatrix formalisms and master element concepts have produced a rigorous 

procedure to keep track of the details. The role of the tensor indices and 

matrix differential calculus are invaluable tools put to practical use. 

Finally, note that these equations are written in a pseudo-FORTRAN language 

which yields coding which is nominally identical in appearance to the theo- 

retical statements. 
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